Fluctuation microscopy: a probe of medium range order
نویسندگان
چکیده
Fluctuation microscopy is a hybrid diffraction-imaging technique that detects medium range order in amorphous materials by examining spatial fluctuations in coherent scattering. These fluctuations appear as speckle in images and diffraction patterns. The volume of material contributing to the speckle is determined by the point-spread function (the resolution) of the imaging optics and the sample thickness. The spatial periodicities being probed are related to the diffraction vector. Statistical analysis of the speckle allows the random and non-random (ordered) contributions to be discriminated. The image resolution that gives the maximum speckle contrast, as determined by the normalized variance of the image intensity, is determined by the characteristic length scale of the ordering. Because medium range ordering length scales can extend out to about the tenth coordination shell, fluctuation microscopy tends to be a low image resolution technique. This review presents the kinematical scattering theory underpinning fluctuation microscopy and a description of fluctuation electron microscopy as it has been employed in the transmission electron microscope for studying amorphous materials. Recent results using soft x-rays for studying nanoscale materials are also presented. We summarize outstanding issues and point to possible future directions for fluctuation microscopy as a technique. 0034-4885/05/122899+46$90.00 © 2005 IOP Publishing Ltd Printed in the UK 2899 2900 M M J Treacy et al
منابع مشابه
Fluctuation microscopy studies of medium-range ordering in amorphous diamond-like carbon films
In this letter, we report fluctuation microscopy studies of medium-range ordering in amorphous diamond-like carbon films and the effect of annealing on this ordering. Annealed and unannealed diamond-like carbon films have almost identical short-range order. Our fluctuation microscopy results, however, indicate the presence of medium range order or clustering in the films on a lateral length sca...
متن کاملReal space information from fluctuation electron microscopy: applications to amorphous silicon
Ideal models of complex materials must satisfy all available information about the system. Generally, this information consists of experimental data, information implicit to sophisticated interatomic interactions and potentially other a priori information. By jointly imposing first-principles or tightbinding information in conjunction with experimental data, we have developed a method: experime...
متن کاملScanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کاملFluctuation Microscopy Studies of Aluminum Oxides Exposed to Cl Ions
Fluctuation electron microscopy studies have been performed on several aluminum oxides exposed to different electrochemical conditions. Little is known about amorphous aluminum oxide structures and their relationship with their passivation behaviors. Corrosion studies have shown that exposure of aluminum oxide films to Cl ions in solution reduces the oxide's passivity, and this results in the o...
متن کاملScanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005